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a b s t r a c t

Thanks to its essential functionality and structure simplicity, proportional-integral-derivative (PID) con-
trollers are commonly used by industrial utilities. A robust PID-based power system stabilizer (PSS) is
proposed to properly function over a wide range of operating conditions. Uncertainties in plant param-
eters, due to variation in generation and load patterns, are expressed in the form of a polytopic model.
The PID control problem is firstly reduced to a generalized static output feedback (SOF) synthesis. The
derivative action is designed and implemented as a high-pass filter based on a low-pass block to reduce
its sensitivity to sensor noise. The proposed design algorithm adopts a quadratic Lyapunov approach to
guarantee �-decay rate for the entire polytope. A constrained structure of Lyapunov function and SOF
gain matrix is considered to enforce a decentralized scheme. Setting of controller parameters is carried
out via an iterative linear matrix inequality (ILMI). Simulation results, based on a benchmark model of
a two-area four-machine test system, are presented to compare the proposed design to a well-tuned
conventional PSS and to the standard IEEE-PSS4B stabilizer.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since power systems are highly nonlinear and are often
subjected to small and large disturbances, conventional fixed-
parameter PSS may fail to maintain stability or lead to a degraded
performance [1–3]. Two main approaches, namely adaptive control
[4–8] and robust control [9–15] have been proposed to enhance
the performance of a PSS. The implementation of an adaptive con-
troller needs tough precautions to assure the persistent excitation
conditions. Adaptive controllers generally have poor performance
during the learning phase unless they are appropriately initialized
[5]. Robust control provides an effective approach to handle uncer-
tainties introduced by continuous variation in generation and load
patterns. Many papers addressed robust PSS design via different
control approaches. The H∞ approach is applied to the design of
a robust PSS for a single-machine infinite-bus system in [15]. In
this approach, the uncertainty in the plant parameters is captured
in terms of bounds on the frequency response. Also, Kharitonov
theorem is applied to the design of a robust PSS for a single-
machine infinite-bus system in [10–16]. Recently, many papers
addressed this problem via an LMI approach [11–14]. In [11], robust
pole placement via state feedback PSS design is presented. How-
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ever, this design approach assumes full state availability. Werner
et al. [12] presented the model uncertainty as a linear fractional
transformation (LFT) and designed an output feedback PSS that
guarantees stability for all admissible plants, while minimizing a
quadratic performance index for a nominal plant which is not a
practical operating point. The resulting controller has the same
order as that of the plant and the case of multimachine is not con-
sidered. Ramos et al. [13] used a combination of LMI technique and
direct feedback linearization to get a robust centralized dynamic
output feedback PSS of order 12 to suppress inter-area oscilla-
tions. In [14], robust decentralized PSS design problem is expressed
as minimizing a linear objective function under LMI and bilin-
ear matrix inequality (BMI) constraints. The authors in [14] also
reported the problem of designing reduced-order decentralized
H∞ dynamic output feedback PSS based on parameter continua-
tion method in LMI framework. This design approach suffers from
the non-convexity of BMIs.

Due to enlarged scale of power systems, many efforts have
been devoted to decentralized robust excitation control strategies
[17–22]. A linear feedback control law based on the solution of
parameterized Riccati equations for each subsystem was developed
in [23]. These ideas have been applied to the design of a robust
exciter based on direct feedback linearization, which transforms
the original nonlinear system to a linear one. This transformation
makes the design procedure simple, but the controller implemen-
tation becomes complex as it is of a nonlinear nature. There also
several results presented in [24,25], where a linear feedback is
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based on appropriately chosen Lyapunov functions to produce
lower bounds on local gains. This method incorporates a quadratic
term in the model which cannot be properly used in analysis.

PID controllers are commonly used in many industrial applica-
tions thanks to its essential functionality and structural simplicity.
Systematic methods for designing PID controllers have been exten-
sively studied in the literature, including robust design of PID
controllers [26,27]. Design of multivariable PID controllers via LMI
is addressed under the topic of static output feedback (SOF) stabi-
lization. Zheng et al. [28] presented an approach to transform the
problem of PID controller design to that of SOF controller design.
The transformation in [28] requires the inevitability of a certain
respective matrix and additional computation is needed to recover
the PID gain matrices. In our proposed approach, PID controller
design is transferred to that of SOF with no additional transforma-
tion and computation. Further, the problem of derivative term is
considered by including a high-pass filter in the SOF design prob-
lem. Moreover, once the SOF problem is solved PID gains are ready
in hand and no additional computation is needed. The SOF stabi-
lization problem is extensively addressed in the LMI framework,
e.g. [29–36]. The authors of [36] presented a recent and an elegant
ILMI algorithm to solve the SOF stabilization problem for nominal
plants.

This paper proposes two ILMI algorithms to solve the problem
of quadratic stabilizability of polytopic systems via SOF controllers.
Moreover, a constrained structure of Lyapunov function and the
SOF gain matrix is proposed to have a set of decentralized con-
trollers. Uncertainty about the plant operating point is expressed as
a polytopic system. The proposed design guarantees �-stability of
different operating points inside this polytope. The proposed design
considers the sensitivity of the derivative term to sensor noise and
improves it by inclusion of a low-pass filter in the design procedure.

The rest of the paper is organized as follows. Section 2 presents
a review of SOF stabilization problem via ILMI algorithms. The pro-
posed modifications of the algorithms, presented in [36] to meet
quadratic stabilizability of polytopic system and the decentralized
scheme, tags this section. The polytopic modeling of power sys-
tems and PID-based PSS design algorithm are presented in Section
3. Simulation results and comparison of the proposed design to a
well-tuned conventional PSS [1] and to the standard IEEE-PSS4B
stabilizer [38] are depicted in Section 4. Section 5 concludes this
work.

2. Static output feedback (SOF) stabilization

2.1. A review of SOF stabilization—some results revisited

Throughout the paper, the notation X > 0(respectivelyX ≥ 0)
means that X is symmetric positive-definite (respectively semidef-
inite) matrix. Consider the following LTI continuous time system:

� : ẋ = Ax + Bu, y = Cx (1)

where x ∈ Rn is the state vector, u ∈ Rr is the control vector and y ∈ Rm

is the vector of the measured outputs, A, B and C are constant matri-
ces. The system � may be identified by its realization (A, B, C). All
systems considered are assumed to be stablizable via SOF gain. The
SOF stabilization problem is to find a static output feedback law:
u = Fy, where F ∈ Rr×m, such that the closed loop system � c given
by:

�c : ẋ = (A + BFC)x (2)

is Hurwitz-stable, i.e. has all its roots in the open left-half of the
complex s-plane. Also, � c is stable if and only if there exists P =
PT > 0 such that

P(A + BFC) + (A + BFC)T P < 0 (3)

Definition 1. � is said to be stablizable via SOF if there exists F
such that � c is Hurwitz-stable.

Definition 2. � is said to be �-stablizable via SOF if � c has its
eigenvalues in the strict left-hand side of the line s = ˛/2 in the
complex s-plane, i.e.:

P(A + BFC) + (A + BFC)T P − ˛P < 0 (4)

Conditions (3) and (4) are BMIs which are not convex optimal
problems. An ILMI method was proposed in [29] to solve this SOF
problem, where an additional variable X was introduced to such
that the stability condition becomes significant when X /= P. This
algorithm tried to find a sequence of the additional variables such
that the sufficient condition is close to the necessary and suffi-
cient one. The main optimization problem in this algorithm was an
ill-posed generalized eigenvalues problem (GEVP). A similar idea
developed in [32] is used in the so-called substitutive LMI method.
Recently, an improved ILMI algorithm for SOF stabilization with-
out introducing any additional variables is proposed in [36]. The
authors of [36] presented two separate ILMI algorithms. The first
algorithm is used to get suitable initial variables. The second ILMI
algorithm uses these initial variables to find the SOF gain matrix.
If these initial variables cannot be found by the first algorithm, the
SOF stabilization problem may not have solutions.

2.2. SOF stabilization of polytopic systems

Simultaneous stabilization is an important issue in the area of
robust control design. It is the problem of determining a single
controller which will simultaneously stabilize a finite collection of
plants. It is usually applied to linear plants characterized by dif-
ferent modes or to the stabilization of nonlinear plants linearized
at different operating points. Simultaneous stabilization via SOF is
addressed in [30]. Cao et al. [30] presented some necessary and suf-
ficient LMI conditions for simultaneous stabilizability of � strictly
proper MIMO plants via SOF and state feedback in the form of cou-
pled algebraic Riccati inequalities (ARIs). This approach utilizes a
heuristic iterative algorithm based on LMI to solve the coupled
inequalities. However, our paper proposes a simpler approach by
extending the algorithms presented in [36] to solve simultaneous
stabilization problem via SOF control.

Consider the system in (1), further consider that (A, B, C) ∈ ˝,
where,

˝ = Co{(A1, B1, C1), (A2, B2, C2), ..., (AN, BN, CN)} (5)

˝ is assumed a convex polytope of matrices for which each ele-
ment may be expressed as a convex combination of the N vertices
of ˝, i.e.:

(A(ς), B(ς), C(ς)) =
N∑

i=1

ςi(A
i, Bi, Ci) (6)

ς ∈ � =
{

ς ∈ [0, ∞)N :
N∑

i=1

ςi = 1

}
(7)

The objective of the SOF is to find a robustly stabilizing control
law u(t) = Fy(t) for the model (5), (6) and (7), i.e. to find a single
gain matrix F ∈ Rr×m such that every vertex of the polytope ˝c is
Hurwitz-stable.

˝c = Co{(A1 + B1FC1), . . . , (AN + BNFCN)} (8)

Robust stability of this polytope is satisfied if there exist matrices
Pi = Pi

T > 0 such that

Pi(Ai + BiFCi) + (Ai + BiFCi)
T
Pi < 0, i = 1, 2, . . . , N (9)
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Quadratic stability of the polytope (5) is enforced if a unique
positive-definite matrix is found for all vertices of the polytope, i.e.
Pi = P, i = 1, . . . , N.

The algorithms in [36] are modified to match the case of
quadratic stabilizability of polytopic systems. It should be noted
that matrix superscripts are used to indicate index of the polytope
vertices, while matrix subscripts are used to indicate the iteration
index in the following algorithms.

Algorithm 1 (Initialization algorithm).

step (1) Set i = 1, P0 = I and L0 = I.
step (2) Derive a Pi and Li by solving the following opti-

mization problem for Pi, Li, V1 and V2:OP1: Minimize
trace (PiLi−1 + LiPi−1) subject to the following LMI con-
straints:

PiA
j + AjT Pi + V1Cj + CjT VT

1 < 0, j = 1, . . . , N (10)

AjLi + LiA
jT + BjV2 + VT

2 BjT < 0, j = 1, . . . , N (11)

(12)

[
Pi I
I Li

]
≥ 0

step (3) If Trace(PiLi) − n < ε1, an initial P is found, stop, where ε1
is a prescribed tolerance.

step (4) If Trace(PiLi) − Trace(Pi−1Li−1) < ε2, an initial P may not be
found, stop, where ε2 is a prescribed tolerance.

step (5) Set i = i + 1, go to step 2.

This algorithm guarantees that an initial common positive-
definite matrix is to be found at all vertices of the polytope.

Algorithm 2 (Find an ˛r-decay rate robust SOF controller gain matrix).

step (1) Set i = 1 and P1 = P as obtained from Algorithm 1.
step (2) Solve the following optimization problem for F with given

Pi.OP1: minimize ˛2 subject to the following LMI con-
straint:

Pi(A
j+BjFCj)+(Aj+BjFCj)

T
Pi−˛iPi<0, j=1, . . . , N (13)

step (3) If ˛i ≤ ˛r , F is a stabilizing SOF gain, stop
step (4) Set i = i + 1, solve the following optimization problem for Pi

with given F.OP2: minimize ˛i subject to (13)
step (5) If ˛i ≤ ˛r , F is a stabilizing SOF gain, stop.
step (6) Solve the following optimization problem for Pi with given

F and ˛i, set k = 1.OP3: minimize Trace(Pi) subject to (13).
If trace minimization problem has an infeasible solution,
set k = k + 1 and put ˛i = ˛i/k if ˛i < 0 or put ˛i = ˛i × k
if ˛i > 0 until a feasible solution is reached.

step (7) If
∥∥Pi − Pi−1

∥∥/
∥∥Pi

∥∥ < ı, where ı is a prescribed tolerance,
go to step 8, else set i = i + 1 and Pi = Pi−1 and then go to
step 2.

step (8) The system may not be stabilizable via SOF, stop.

The proposed algorithms differ from that presented in [36] in
the following points:

i. LMI constraints (10), (11) and (13) must be enforced at all ver-
tices of the polytopic system using common positive-definite
matrices.

ii. Stopping criterion in Algorithm 2 is changed to ˛i ≤ ˛r, in order
to guarantee the desired minimum decay rate at all vertices of
the polytope.

iii. To overcome the infeasibility of trace minimization in Algorithm
2, the following procedure is proposed to get a feasible solu-
tion. Set k = k + 1 and put ˛i = ˛i/k if ˛i < 0 or put ˛i = ˛i × k

if ˛i > 0 until a feasible solution is reached. This problem is not
reported in [36].

iv. An extension to the case of decentralized SOF controllers design
is investigated.

The proposed Algorithms 1 and 2 comprise a set of LMI con-
straints which belongs to the generic problems of LMI, namely
optimization and generalized eigenvalue problem (GEVP). LMI con-
trol toolbox, for use with MATLAB [37], was used to solve LMI
constraints presented in this paper. The solution of LMI problems
presented in Algorithms 1 and 2 depends mainly on two functions
of the LMI control toolbox, namely mincx and gevp [37]. The syntax
of an LMI problem using LMI control toolbox, for use with MAT-
LAB, is given for illustration. Consider the LMI problem in step 4 of
Algorithm 2; the syntax of this problem in the framework of LMI
control toolbox is given as follows:
setlmis([]);
Pi = lmivar(1,[ns,1]);
lmiterm([1 1 1 0],0);
lmiterm([−1 1 1 Pi],1,1); % P > 0
for j = 1:nsys

sj = psinfo(sys,‘sys’,j);
[aj,bj,cj,dj] = ltiss(sj);
lmiterm([(j + 1) 1 1 Pi],(aj + bj*F*cj)′ ,1,‘s’);
lmiterm([−(j + 1) 1 1 Pi],1,1);

end
lmis = getlmis;
[alfa min,xopt] = gevp(lmis,nsys,opt); % generalized eigenvalue problem solver
Pi = dec2mat(lmis,xopt,Pi);

2.3. Decentralized SOF stabilization of multimachine power
systems

The analysis in this section is extended to a multimachine power
system comprising m-machines whose linearized model takes the
form of (1). Further, the dynamics of Machine i in a multimachine
power system take the following state-space realization:

ẋi = Aiixi +
m∑

j=1,j /= i

Aijxj + Biui

yi = Cixi

(14)

The term
∑m

j=1,j /= iAijxj represents the interaction of machine
i with all other machines in the considered system. Each machine
subsystem is both input and output decentralized, hence, it is axiom
to consider a control law of the form:

ui = Fiyi i = 1, . . . , m (15)

The closed loop subsystem takes the following form:

ẋi = (Aii + BiFiCi)xi +
m∑

j=1,j /= i

Aijxj

The overall closed loop power system takes the form of⎡⎢⎣
ẋ1

ẋ2

.

.

.
ẋm

⎤⎥⎦ =

⎡⎢⎣
A11 + B1F1C1 A12 · · · A1m

A21 A22 + B2F2C2 · · · A2m

.

.

.
.
.
.

. . .
.
.
.

Am1 Am2 · · · Amm + BmFmCm

⎤⎥⎦
⎡⎢⎣

x1

x2

.

.

.
xm

⎤⎥⎦ (16)

This form can be rewritten as follows:

ẋ = (A + BFC)x,

where

B= m⊕
i=1

Bi=

⎡⎢⎢⎣
B1

B2

. . .
Bm

⎤⎥⎥⎦ , C= m⊕
i=1

Ci, and, F= m⊕
i=1

Fi (17)
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The objective in this subsection is to find a robust decentralized
SOF controller that guarantees �-stability of N different operat-
ing points. To consider the problem of robust decentralized SOF
controller design, Algorithms 1 and 2 must enforce a constrained
structure of Lyapunov and controller matrices as follows:

P = m⊕
i=1

Pi, L = m⊕
i=1

Li, V1 = m⊕
i=1

V, and, V2 = m⊕
i=1

V2i (18)

3. PID-based PSS design

This section describes the steps involved in robust PID-based
PSS design. Firstly, the power system model is prepared to initiate
the design procedure.

3.1. The polytopic model for power systems

Power system behavior is usually modeled by a set of differential
equations representing the dynamics of the generators and their
respective automatic voltage regulators (AVRs) coupled to another
set of algebraic equations describing the stators, transmission net-
work and the loads that are modeled by constant impedance.
Incorporating the algebraic equations in the differential set, by a
process known as network reduction, the resulting model is in
the traditional state-space form. Classical techniques involved in
the design of PSS are based on linearized models. The robustness
of these PSSs is limited with respect to continuous variations in
the operating point, due to the fact that a linearized model is
accurate only in the neighborhood of the operating point around
which the system is linearized. A polytopic model is a good alterna-
tive to overcome this problem introduced by classical techniques.
The system is linearized around different N typical points pro-
ducing a polytope of matrices as in (5). The convexity of (5) can
be explored by simple ways. For example, if certain properties
like quadratic stability and/or minimum decay rate are satisfied
at all vertices of ˝, they extend to all matrices that are within
the polytope. The 4th order model is adopted to represent the
dynamics of each machine as given Appendix A.1. For network
equations, it is proposed to use the form of bus impedance matrix
in the synchronously rotating frame of reference ZDQ after network
reduction assuming constant-impedance loads, i.e., VDQ = ZDQ IDQ ,
where VDQ and IDQ are machine terminal voltage and terminal
currents referred to a common reference. The machine–network
transformation is given in Appendix A.2. Typically, speed deviation
measurements are used as the feedback signals. The supplemen-
tary signal for each machine based on PID control law takes the
following form:

ui = Kp�ω + Ki

∫ t

0

�ωdt + Kd
d�ω

dt
(19)

The integral action can be rewritten in terms of the incremental
power angle. For incremental quantities, it is derived from (24) that:

d�ı

dt
= ωo�ω ⇒ d�ı = ωo�ωdt

∫ t

0

�ωdt = 1
ωo

∫ t

0

d�ı = 1
ωo

�ı (20)

Consequently, the integral action is expressed in terms of the
state variable �ı for the linearized model (small-signal model).
PSSs are incorporated in power systems to suppress electrome-
chanical oscillations in the range of 0.2–3 Hz. This specification
determines the range in which the derivative term should be active.
It is proposed to consider a high-pass filter whose cut-off frequency
accounts for this range of desired frequencies. A derivative action is

Fig. 1. Derivative action implemented as a high-pass filter based on a low-pass
block.

considered as shown in Fig. 1, and a new state variable �a is added.
The dynamics of the low-pass filter is described by the following
differential equation.

p(�a) = 1
T

[p(�ω) − �a] (21)

Eq. (21) is incorporated to the differential equations of each
machine (24), resulting in a 5th order model for each machine.
Finally, the control signal of Machine i due to PID controller can
be rewritten as follows:

ui = Kp�ω + Ki

ωo
�ı + Kd�a (22)

ui = Kp�ω + K ′
i�ı + Kd�a (23)

Adding the filter equation, the elemental B and C matrices of
(17) are defined as follows:

Bi =
[

0 0 0
KEi

TEi
0

]T

, Ci =
[

0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

]
, i = 1, . . . , m (24)

The problem of PID-based PSS design is converted to that of an
SOF controller design, thanks to the integral relation between ω
and ı, and to the inclusion of a low-pass filter. Hence, there is no
need for the transformation presented in [28]. The design steps can
be summarized as follows:

i. Select an appropriate cut-off frequency for the low-pass-filters
on all generating units.

ii. Determine the state-space realization of the linearized power
system model around different operating points considering the
coupled filters.

iii. Form the polytopic system as given by (5).
iv. Run Algorithm 1 to get an initial positive-definite matrix at all

vertices of the polytope determined in step 3. The constrained
structure of the matrices P and L should be considered in this
algorithm.

v. The initial block-diagonal positive-definite matrix obtained
from Algorithm 1 is fed to Algorithm 2 to calculate the SOF gains.
The block-diagonal structure of the SOF gain matrix must be
preserved as well.

4. Simulation results

The purpose of this section is to demonstrate the merits of the
proposed PSS based on a more realistic model. A benchmark model
of a two-area four-machine power system [1] is utilized in this
study for the following reasons:

1. It is a multimachine system that is accepted in the literature as
a tool to study the inter-area mode of oscillations.

2. Each generator is represented by a full seventh-order model that
considers stator transients and d–q damper winding. This makes
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Fig. 2. Two-area four-machine power system [1].

the results reliable when the system is exposed to large distur-
bance.

3. This model is available as a MATLAB/Simulink demo program
[38]. Furthermore, it is equipped with well-tuned power system
stabilizers including the standard IEEE-PSS4B [39] and the con-
ventional PSS [1]. This gives credit to the comparison with the
proposed PSS.

The benchmark two-area four-machine test power system
shown in Fig. 2 is adopted for simulation studies. The test sys-
tem consists of two fully symmetrical areas linked together by two
230 kV lines of 220 km length. It is specifically designed in [1] to
study low frequency electromechanical oscillations in large inter-
connected power systems. Each area is equipped with two identical
round rotor generators rated 20 kV/900 MVA. The synchronous
machines have identical parameters except for the inertias which
are H = 6.5 s in Area 1 and H = 6.175 s in Area 2. Thermal plants hav-
ing identical speed regulators are further assumed at all locations, in
addition to fast static exciter with a gain of 200. Saturation limits are
imposed on both excitation voltages (Efd) and the supplementary
signals (U) as specified in [1]. The loads are represented as constant
impedances and spilt between the two areas. The full parameters
of a single unit are given in Appendix A.3, while the parameters
of the reduced-order model used for design purpose are given in
Appendix A.4. The effectiveness of the adopted conventional PSS
[1], in damping both local and inter-area oscillations, is assisted by
Bode plot analysis as given in Appendix A.5.

The design procedure is initiated by developing a polytopic
system. Since damping and frequency of inter-area oscillations
depend mainly on the quantity of the tie-line power, the vertex
systems of the considered polytope will be calculated at different
tie-line powers. These vertex systems are calculated at 200 MW,
400 MW, 600 MW and 700 MW tie-line powers. The load in Area
2 is increased gradually such that steady-state load flow solutions
exist at such tie-line powers. The results of load flow solutions are
omitted to save space. The linearized models around these operat-
ing points are calculated as reported in [1]. The four values of the
tie-line power are equivalent to four linearized models. Each model
corresponds to a certain operating point and can be seen as a ver-
tex of a polytope; i.e. we construct our polytope based on the given
vertices. The proposed design guarantees simultaneous stabiliza-
tion at the vertices (operating point) as well as any operating point
that lies inside the polytope. Throughout the calculation of the lin-
earized model, the dynamics of each machine is represented by a
5th order dynamic model due to the incorporation of a high-pass fil-
ter with time constant of 0.01 sec. The input and output matrices of
each linearized model, i.e. B and C are the same and having a block-
diagonal structure of the elemental matrices (24), while the state
matrix A differs from one to another. The polytopic model is fed to
Algorithm 1 and an initial block-diagonal positive-definite matrix
is found after 2 iterations. The resulting block-diagonal positive-
definite matrix (18) comprises the following four matrices on its

Table 1
Decentralized PID gains.

Machine # KP Ki Kd

1 47.311 53.077 −0.0267
2 39.426 139.84 0.0697
3 23.285 −17.477 −0.0312
4 21.689 54.573 −0.0796

diagonal entries.

P1 =

⎡⎢⎢⎣
4.1749 280.5 −3.5076 −0.0032 −0.3972
280.5 33341 −396.6 −0.5902 −43.65

−3.5076 −396.6 6.9295 0.0082 0.8535
−0.0032 −0.5902 0.0082 0.0000 0.0003
−0.397 −43.65 0.8535 0.0003 0.6866

⎤⎥⎥⎦

P2 =

⎡⎢⎢⎣
5.2445 248.49 −6.2021 −0.0053 −0.8559
248.49 19391 −388.75 −0.5358 −52.093

−6.2021 −388.75 11.054 0.0111 1.6415
−0.0053 −0.5358 0.0111 0.0000 0.0003
−0.8559 −52.093 1.6415 0.0003 0.9059

⎤⎥⎥⎦

P3 =

⎡⎢⎢⎣
1.5905 75.87 −0.9609 0.0000 −0.1003
75.87 20139 −365.13 −0.5159 −44.696

−0.9609 −365.13 10.821 0.0137 1.4547
0.0000 −0.5159 0.0137 0.0001 0.0008

−0.1003 −44.696 1.4547 0.0008 0.8298

⎤⎥⎥⎦

P4 =

⎡⎢⎢⎣
1.2115 43.248 −1.088 0.0001 −0.1033
43.248 13114 −391.8 −0.4972 −49.987
−1.088 −391.8 17.385 0.0198 2.3807
0.0001 −0.4972 0.0198 0.0001 0.0011

−0.1033 −49.987 2.3807 0.0011 1.0559

⎤⎥⎥⎦
This positive-definite matrix is passed to Algorithm 2 which con-

verges after two iterations and the following SOF gains are obtained
and a minimum decay rate of 0.5 is guaranteed, which is satisfac-
tory in power system control topic [11]. The resulting gains of the
decentralized PSS are listed in Table 1

Hint: The computational time depends mainly on the number
of vertices of the considered polytopic system and the size of the
power system, i.e. number of involved machines. A CPU of 1.7 M
processor consumes about 15 min to calculate the SOF gains listed
in Table 1.

The efficacy of the proposed PID controllers is demonstrated by
calculating the closed loop poles of the linearized system at differ-
ent operating points. A fine grid of operating points is considered by
varying the tie-line power between 200 MW and 800 MW and the
linearized models of 25 operating points are calculated. The open
loop poles of the linearized models around these operating points
are calculated and the dominant poles are depicted in Fig. 3 while
the dominant closed loop poles are depicted in Fig. 4.

Remarkably, Fig. 3 contains two set of electromechanical oscil-
lations namely, local and inter-area modes of oscillations. A local
mode represents the interaction between the machine masses
within the same area. Local mode of Area 1 is close to that of Area 2
in terms of damping and frequency; therefore, the two local modes
appear in a single cluster. As depicted in Fig. 4, the proposed design
guarantees a minimum decay rate that is greater than 0.5. Obvi-
ously, Fig. 4 shows the most dominant modes of the controlled
system. These modes do not represent the electrometrical oscil-
lations only, i.e. two local modes and one inter-area mode as four
clusters appear in the figure.

The zero roots depicted in Fig. 3 are absent in Fig. 4 due to par-
tial state feedback by the incremental rotor angle of each machine
in the design procedure, i.e. the integral term in the implemented
control law.

Time response simulations are carried out under the following
moderate and severe fault scenarios:
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Fig. 3. Dominant open loop poles.

Fig. 4. Dominant poles with the proposed PID-based PSS.

Fig. 5. Relative speed between Machines 1 and 4, subject to Test point I and Fault
scenario I.

Fig. 6. Relative rotor angle between Machines 1 and 4, subject to Test point I and
Fault scenario I.

Fig. 7. Tie-line power (MW), subject to Test point I and Fault scenario I. If the
system operates at Test point I and undergoes Fault scenario I, the relative speed
and angle between Machines 1 and 4 together with tie-line power are depicted in
Figs. 5–7 respectively. As seen, the proposed decentralized PID-based PSS achieves
good damping characteristics in terms of maximum overshooting and settling time.

1. Fault scenario I consider a moderate fault of a three-phase
to ground short circuit at Bus 8 which is self-cleared after 3
cycles.

2. Fault scenario II considers Severe fault of a three-phase to ground
short circuit at Bus 8, cleared after 8 cycles by opening the circuit
breakers at the ends of the lines connected to this bus.

Also, the following test points are considered throughout simu-
lations:

1. Test point I considers the nominal tie-line power of 413 MW.
2. Test point II considers a tie-line power of 475 MW.
3. Test point III considers a heavy tie-line power of 585 MW.

• If the system operates at Test point I and undergoes Fault scenario
I, the relative speed and angle between Machines 1 and 4 together
with tie-line power are depicted in Figs. 5–7 respectively. As
seen, the proposed decentralized PID-based PSS achieves good
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Fig. 8. Relative speed between Machines 1 and 4, subject to Test point I and Fault
scenario II.

Fig. 9. Relative rotor angle between Machines 1 and 4, subject to Test point I and
Fault scenario II.

damping characteristics in terms of maximum overshooting and
settling time.

• If the system operates at Test point I and undergoes Fault sce-
nario II, the relative speed and angle between Machines 1 and 4
together with tie-line power are depicted in Figs. 8–10 respec-
tively. Even at nominal tie-line power, the proposed PSS achieves
minimum overshooting in relative rotor angle so, it can extend
the stability margin of the system. The drift in the operating point
between the proposed controller and the standard controllers as
shown in Figs. 9 and 10 are mainly due to the steady state value of
the control signal provided by the integral action of the proposed
PID controller. However, if the integral action is switched-off, the
drift in the operating point will disappear as depicted in Fig. 11.

• When the system operates at Test point II and undergoes Fault
scenario II, relative speed and relative rotor angle between
Machines 1 and 4 together with tie-line power are depicted in
Figs. 12–14. Remarkably, the proposed design can handle larger
tie-line power, while CPSS and the IEEE-PSS4B fail to maintain
system stability at this value of tie-line power.

Fig. 10. Tie-line power (MW), subject to Test point I and Fault scenario II.

Fig. 11. Tie-line power (MW), subject to Test point I and Fault scenario II with
integral action reset.

Fig. 12. The relative speed between Machines 1 and 4, subject to Test point II and
Fault scenario II.
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Fig. 13. The relative angle between Machines 1 and 4, subject to Test point II and
Fault scenario II.

Fig. 14. The tie-line power (MW), subject to Test point II and Fault scenario II.

Fig. 15. Relative speed between Machines 1 and 4, subject to Test point II and Fault
scenario II.

Fig. 16. Relative angle between Machines 1 and 4, subject to Test point II and Fault
scenario II.

Fig. 17. Tie-line power (MW), subject to Test point III and Fault scenario II.

• When the system operates at Test point III and undergoes Fault
scenario II, relative speed and relative rotor angle between
Machines 1 and 4 together with tie-line power are depicted
in Figs. 15–17 respectively. Obviously, the proposed design
is capable to maintain system stability under heavy tie-line
power.

5. Conclusion

This paper presents an iterative method, based on LMI tech-
niques, to design a robust decentralized PID-based PSS. The ILMI
algorithms reported in [36] have been modified to meet power
system specification related to robustness and decentralization
of controllers. Sensitivity to sensor noise is also accounted for
by including a high-pass filter in the design procedure. The pro-
posed procedure releases the PID-based PSS design from the
requirements of invertability of a respective matrix as reported
in [28]. Although adoption of a quadratic Lyapunov approach
seems to be conservative, the reflection on the values of PID
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gains is little. However, the design is rather conservative since
it provides sufficient stability conditions only. The effectiveness
of the proposed design in suppressing both local and inter-area
modes of oscillations is verified by a nonlinear simulation of
the benchmark model of two-area four-machine power system.
Comparing the PID-PSS to a well-tuned conventional PSS and to
the standard IEEE-PSS4B affirms the capability of the proposed
design to maintain system stability under heavier tie-line pow-
ers.

Appendix A.

A.1. The 4th order model adopted to describe each machine
dynamics

Differential equations:

ı̇i = ωoωi

ω̇i = Tmi

Mi
− E′

qiIqi

Mi
− (xqi − x′

di
)

Mi
IdiIqi

Ė′
qi

= −
E′

qi

T ′
doi

− (xdi − x′
di

)

T ′
doi

Idi + Efd

T
′
doi

Ėfdi = −Efdi

TEi
+ KEi

TEi
(Vrefi + ui − VTi)

(25.a)

Stator algebraic equations:

Vdi + RaiIdi − XqiIqi = 0

E′
qi − Vqi − RaiIqi − X ′

di
Idi = 0

(25.b)

A.2. Machine–network transformations [1][
Xdi

Xqi

]
=

[
sin ıi −cos ıi

cos ıi sin ıi

][
XDi

XQi

]
i = 1, . . . , m[

XDi

XQi

]
=

[
sin ıi cos ıi

−cos ıi sin ıi

][
Xdi

Xqi

]
i = 1, . . . , m

where X may be either I or V.

A.3. Full parameters of one unit in the multimachine power
system [1]

Ra = 0.0025 pu, xd = 1.8 pu, xq = 1.7 pu, xl = 0.2

pu, x′
d

= 0.3 pu, x′
q = 0.55 pu, x′′

d
= x′′

q = 0.25 pu,

T ′
do

= 8 s, T ′
qo = 0.4 s, T ′′

do
= 0.03 s, T ′′

qo = 0.05 s,

H = 6.5 s, ωo = 377 rad/s,

Rating = 900 MVA, KE = 200, TE = 0.001 s, Efdmin = 0,

Efdmax = 12.3 pu,

Umin = −0.15 pu, Umax = 0.15 pu.

A.4. Parameters of the reduced-order (approximate) model used
for the design purpose in Section 4

xd = 1.8 pu, xq = 1.7 pu, x′
d = 0.3 pu, T ′

do = 8 s,

M = 2H = 13 s, KE = 200, TE = 0.001 s, ωo = 377 rad/s,

Rating 900 MW

A.5. Bode plot of conventional PSS considering the parameters
given in [1].

The above Bode plot verifies that an adequate phase-lead is pro-
vided for concerned frequency range of both local and inter-area
oscillations which is typically from 0.2 Hz to 3 Hz.
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